Formulae for relationships between physical quantities

The relationships listed below should not be provided for $A S$ and A level candidates.
(i) the relationship between speed, distance and time: $v=\frac{s}{t}$
(ii) the relationship between force, mass and acceleration:
force $=$ mass x acceleration
$F=m a$
(iii) the relationship between density, mass and volume: $D=\frac{m}{V}$
(iv) the concept of momentum and its conservation:
momentum $=$ mass x velocity
$p=m v$
(v) the relationships between force, distance, work, power and time:
work done $=$ force x distance moved in direction of force
(vi) the relationships between mass, weight, potential energy and kinetic energy:
weight $=$ mass x gravitational field strength
kinetic energy $=1 / 2 m v^{2}$
change in potential energy $=$ mass \times gravitational field strength \times change in height
(vii) the relationship between an applied force, the area over which it acts and the resulting pressure:
$P=\frac{F}{A}$
(viii) the Gas Law:
pressure \times volume $=$ number of moles \times molar gas constant \times absolute temperature $p V=n R T$
(ix) the relationships between charge, current, potential difference, resistance and electrical power: charge $=$ current \times time
$\Delta Q=I \Delta t$
potential difference $=$ current \times resistance
$V=I R$
electrical power $=$ potential difference \times current
$P=V I$
(x) the relationship between potential difference, energy and charge:

$$
V=\frac{E}{Q}
$$

(xi) the relationship between resistance and resistivity:

$$
R=\frac{\rho l}{A}
$$

(xii) the relationship between charge flow and energy transfer in a circuit: energy $=$ potential difference \times current \times time $E=V I t$
(xiii) the relationship between speed, frequency and wavelength:
wave speed $=$ frequency x wavelength
$v=f \lambda$
(xiv) the relationship between centripetal force, mass, speed and radius:
$F=\frac{m v^{2}}{r}$
(xv) the inverse square laws for force in radial electric and gravitational fields:
$F=\frac{k Q_{1} Q_{2}}{r^{2}}$
$F=\frac{G m_{1} m_{2}}{r^{2}}$
(xvi) the relationship between capacitance, charge and potential difference:

$$
C=\frac{Q}{V}
$$

(xvii) the relationship between the potential difference across the coils in a transformer and the number of turns in them:
$\frac{\text { pd across primary coil }}{\text { pd across secondary coil }}=\frac{\text { number of turns on primary coil }}{\text { number of turns on secondary coil }}$

